

Unbundling and Smart Grids

Conflicting Policies?

Presentation at INFRADAY Berlin, October 9, 2010 Nele Friedrichsen, Jacobs University Bremen

Agenda

unbundling

- debate transmission
- key issues
- transferability to distribution
- defining "Smart Grids"
 - goal
 - definitions
 - characterization of different concepts
- analysis of interactions
 - central control approach
 - decentral control approach
- conclusion

Unbundling I transmission network

- transmission network debate
 - report on sector inquiry 2007
 - third legislative package 2009
- arguments
 trading off cost and benefits
 - discrimination incentives and ability of integrated firms
 - strategic investment withholding (interconnector investment)

coordination losses

Unbundling II options

- full Ownership Unbundling
 - complete elimination of ties between firms
 - coordination problem
- (deep) Independent System Operators (deep-ISO)
 - solving coordination problem
 - eliminating discrimination incentives
 - strategic investment withholding
- Effective and Efficient Unbundling (EEU), third way, Independent Transmission Operator (ITO)
 - incomplete solution to discrimination problem

Unbundling III distribution networks

at the moment: legal unbundling

- smart grids transform distribution networks
 - more similarity to transmission
 - active management
 - increasing actor participation: generation and load
 - discrimination potential and possibility
- isolated networks no interconnectors
 - no interregional linkages
 - strategic investment withholding probably not a problem

definition

an electricity network that can cost efficiently integrate the behaviour and actions of all users connected to it – generators, consumers and those that do both – in order to ensure economically efficient, sustainable power system with low losses and high levels of quality and security of supply.

(ERGEG 2009)

► triangle of energy policy: efficiency, reliability, sustainability

tool to respond to new challenges

- integration of intermittent renewable energies
- expansion of demand flexibility, demand side management
- increasing storage
- flexible network management necessary
- intelligent management for system optimization (generation, storage, load, network)

- elements of smart grid definitions:
 - bi-directional communication
 - "self-healing" (US Grid 2030)
 - self-controlled, automatic balancing of supply and demand (MeRegio)
 - online information for improved network management (E-DeMa)
 - control signals from a centralized control platform (MeRegio)
 - utilizing controllability potential / load shifting potential of large customers (eTelligence)
 - regional market for electricity bringing together generators, consumers, service providers, and network operators
- diverse functions and aspects
 - monitoring, information, control, market places

Smart Grids III concepts: realizing the Smart Grid

- virtual power plants
- demand side management
- control of power flows
- smart metering
- flexible energy prices
- storage and buffering
- question from unbundling perspective
 - allocation of control rights
 - access to information
 - roles and responsiblities (R&R)
 - system operation
 - reliability / control in emergencies
 - information processing

Smart Grids IV centralized control rights I

central control via integrated firm:

- network firm
- own generation, storage facilities
- integrated with retail

responsible for

- system operation
- information handling

coordination as hierachical system

information flow	••••
physical flow	

Smart Grids V centralized control rights II

central control via system operator:

- independent system operator
- responsible for system operation and information handling

information flow

physical flow

 \rightarrow independent entity

Smart Grids VI decentralized control rights

decentral control:

- each actor retains control

coordination

- independent system operator
- market place/ price signals
 fully reflective price = coordinating device
 prices must encompass all system conditions:
 → i.a. location, time, line capacity

responsibility for system operation

- network firm
- independent system operator

information handling

- independent entity
- network firm
- information flow ••••• physical flow ••••

Analysis central control approach

- delegation of control necessary
- integrated system operator / network company
 - + best informed actor
 - + efficient coordination / integrated planning of grid, generation
 - DG is increasing → more third party activity in any case
 - discrimination potential and incentive for load and generation (favouring own over competing generators or customers)

independent system operator

- + neutral party \rightarrow no discrimination incentives
- has to receive all relevant information \rightarrow information problems?
- not "per-definition" integrated planning \rightarrow coordination necessary
- ISO can also serve in a market based solution

Analysis decentral control approach

- control rights remain with actors
- external coordination necessary
- market coordination
 - + theoretically appealing
 - + no discrimination incentive or potential
 - + room for innovation, new concepts and market participants
 - difficult in practice, transaction cost, response/ activity by market participants
 - difficulty to design correct prices, might create unwanted discrimination
 - less coordination among network and suppliers
- coordination via markets and aggregators
 - + easier to handle, less market participants
 - + aggregators can bundle and coordinate different actors
 - difficulty to design reflective prices
 - market operator needed

possibly combination with system operation to an ISO as market operator

Conclusions

smart grids will trigger the unbundling debate at distribution level

- discrimination issues arise in operation and connection
- connection possibly good controllable
- operation should be independent
- (non-deep) Independent System Operator as workable solution
 - in contrast to transmission no problem of investment withholding
 - counterargument to ISOs at transmission level is weakened
 - no interconnectors in distribution networks
 - advantages from ownership unbundling are smaller
 - no ownership unbundling necessary to guarantuee non-discrimination
 - ISO adresses potential coordination problem
- allocation of rules and responibilities still to be determined
 - take into account possible unbundling issues
 - proactive design of framework to support investment and innovation

Thank you for your attention.

Contact: Nele Friedrichsen

tel.: +49 (0) 421 200 - 4883 email: n.friedrichsen@jacobs-university.de

