Infraday: The Future of E-Mobility

Fabian Kley, Fraunhofer ISI

October 9th, 2009

Fraunhofer ISI is actively researching the field of e-mobility with focus on system analysis

Fraunhofer ISI

- ...researches how innovations are created, which players need to be included and how they can be supported
- ...evaluates profitability, social and political potential as well as technical barriers
- ...helps decision makers in commerce, academia and politics with strategic analysis
- ...uses the latest theories, models, social-economic methodologies, as well as databases and develops these continuously
- ...works on approx. 250 projects p.a.
- …leads the German innovation landscape like no other research institute for more than 35 years

E-Mobility is seen as a key lever for efficiency, reduced emissions, and renewable integration in transport

Key Levers for E-Mobility

Efficiency Increase	 EVs are the most efficient propulsion technology Centralization of energy conversion 			
Emission Reductions	 Reduction of CO₂-emissions in transport Avoidance of further local emissions such as noise or particulate matter 			
Renewable Integration	 Shift from oil towards other energy sources EV battery storage capacity is an important lever for the built-up of further intermittent renewable capacities 			

EVs are the most efficient propulsion technology and can help to reduce CO₂-emissions in transport

Efficiency and Emissions of Different Propulsion Technologies

Source: Own calculations and LBST

Note:

With the built-out of wind in the next years, additional storage capacity is needed

-oad [MW]

Price Variations in Different Wind Built-Out Scenarios

- Share of wind generation relatively low
- Here, renewable load never exceeds the system load
- Prices between 20-80 €/MWh
- Some extreme peaks occur when peak demand is combined with weak wind hours

Source: Power ACE Simulation

- Higher wind generation share
- Multiple hours where the renewable load exceeds the system load
- Prices more volatile between 0-150 €/MWh

EVs are a part of the solution, but other measures still needed - V2G usage economically questionable

Storage Capacity - 2030

- In the Fraunhofer ISI "dominance" scenario 25% (1 mio.) EV share by 2030
- EVs just part of the solution, other measures still needed:
 - Better transmission
 - Other storage cap.
 - Flexible power plants
- Load shifting economically viable
- Positive balancing energy questionable due to battery cycle life implications

Today, electric vehicles are far more expensive than ICEs - future cost reductions expected

Main Sensitivities

- Battery costs need to drop from \$1,000/kWh to almost \$300/kWh
- Energy costs question remains if power costs can be decoupled from crude oil prices, esp. levels beyond \$80/bbl needed
- Taxation and support schemes - today EVs profit from less taxes on power than on fuel, same taxation would defer cost parity by 5-10 years
- Additional revenue e.g. from V2G services

In the beginning, electric vehicles will mainly target a niche market

- EVs only in some segments profitable
- Attractive first user segments
 - Commuters
 - Second-car users
 - Full time employees from areas with less than 100,000 inhab.
- Potential of up to 4% of car users (2015) in existing infrastructure equivalent to 1.6 mio.

Depending on future market penetration, charging infrastructure has to provide additional functionalities

Charging Infrastructure	Innovators´ Market	Niche Market (e.g. commuters, business clients)	Market Penetration	Mass Market	Time
Grid Integration	🚗 🕳 💭 🚅				
Infrastructure	Norms and standardsMainly private infrastructure	 Expansion of semi public charging infrastructure Smart Metering 	 Expansion of high power charging concepts 	 Widespread private and public charging infrastructure Smart Grids 	
Control		Time-of-use rates	 Demand Side Management (Dynamic rates) 	Bi-directional connection	
System Services			 Load shift (negative supply of balancing power) 	 Load shift and active load leveling (positive & negative balancing power) 	

Grid Integration with Increasing Market Penetration

Separate charging points or switching stations will be hardly economic

FIRST ESTIMATE

Profitability of Different Charging Infrastructure Concepts

Charging Infrastructure	Costs per Charging Point (€, w/o replacement)	Vehicles per Charging Point (in pieces)	Infrastructure Costs per Vehicle (in €)	Profit Margin per Vehicle (at 5%, in €/a)	Amortisation Period (in years)
Private Connection	100-200 €	1	100-200 €	12 € (Total: 240 € ⁶⁾)	8-16 years
Semi-private Connection	100-200 €	1-2	50-200 €		4-16 years (possibly free of charge)
Public Charging Point	2,000-8,000 € ¹⁾	12 ⁴⁾	170-670 €		14-55 years
Battery Switching Station	~750,000 € ⁾ + 1,450,000 € batteries ³⁾	2,750 ⁵⁾	~800 €		67 years ⁸⁾
Conventional Filling Station	~750,000 € ⁹⁾	2,750 ⁵⁾	~272 €	39 € (Total: 780 € ⁷⁾)	7 years (not including shops)

Note: Vehicle consumption 12 kWh/100km, annual mileage 10,000 km; (1) Costs should be estimated as being at the higher end of the range because of protection against vandalism etc.; (2) Costs of an average conventional filling station according to experts; (3) Approx. 700 cars arrive every day spread evenly across 12 h (see also (5)), i.e. ~180 batteries have to be charged at the same time, a battery costs approx. 8,000 €, equivalent to ~1,450,000 €; (4) Max. 3 charges per day due to longer standing time, vehicles have to be charged every 4 days, i.e. 12 vehicles can be charged at charging points; (5) 14,500 filling stations in Germany to about 40 million vehicles; (6) Sale price of 0.20 €/kWh at a total consumption of 1,200 kWh; (7) Gasoline price of 1.30 €/l at a consumption of 6 l/100km; (8) Esp. replacement of battery would greatly extend amortization period

- E-Mobility is one of the kex technologies to make transport more sustainable by
 - Improving efficiency ratios
 - Reducing overall emissions
 - Diversifying energy sources from oil towards renewable energies
- EVs help to integrate renewables, but other measures need still to be followed
- For a mass market application, however, **EVs need to overcome today's deficiencies**
 - High battery costs for stacks with high energy content and manageable weight
 - Short battery cycle life/ lifetime
 - Long charging times
- Today, EVs mainly target niche markets, e.g. city-BEVs or electric scooters
- Step-wise integration of e-mobility in the electricity infrastructure
 - Private connections and charging points are economically more attractive than public charging points or even switching stations and reach large initial customer segments
 - A question remains: Which kind of infrastructure is best to support market penetration?

...please feel free to reach out to me for questions!

Market penetration scenarios for e-mobility are probably to bullish

Separate charging points will be hardly economic

APPENDIX

Details: Charging Points

- High costs for charging stations (w/o grid connection)
- Investments of 1,000-7,000 € and maintenance of 150 € annually
- Charging stations at home with investment costs of 50-350 €
- Low revenue levels
 - Annually approx. 1,200 € based on 2-3 hours charging time and three charges per day
 - Realization of tailored business models

Charging Point, Project Better Place

Switching stations will be hardly economic

APPENDIX

Details: Switching Station

- Advantages
 - "Gas station" concept stays in place
 - Quick "charges" possible
 - Easier grid integration possible, e.g. to enable load balancing
- Disadvantages
 - High capital intensity due to additional batteries (roughly 1,4 per vehicle)
 - Standard battery packs jeopardizes the automakers agenda, e.g.
 - Loss of value creation
 - Identification over driving power and uniqueness
 - Curtailing the design of different vehicles
 - Battery production is the bottleneck
 - Switching machines/ tools are costly
 - Safety issues at high voltage

Battery Switching, Project Better Place

