

Urban Structure and Demographic Development

11th October 2008 Dr. Joachim Geske

Introduction

- Introduction
- Dynamic Urban Structure Equilibrium DUSE
- Spatial structure of the steady state
- Transitional dynamics
- Infrastructure
- Conclusion

Byproduct of:

Project Infradem – Infrastructure and demographic development

Introduction

Objective:

Improving macroeconomic analysis of demographic change by adding

microeconomic structures

- 1. is there the willingness to consume a good, that is produced with capital financed by a macroeconomic savings plan?
- 2. will an age class have enough income to consume the way before?

Method:

- 1. Overlapping Generations Model (OLG)
- 2. Microeconomic structure
 - sectoral structure
 spatial structure
 Urban Structure Model
 (Muth, Mills)

• ...

→ Combination: Dynamic Urban Structure Equilibrium (DUSE)

→ energy demand

→ energy system models

Introduction

Applications:

impact of demographic and energy price change on

- 1. housing structure (capital per flat, flatsize)
- 2. spatial population density distribution:
 - 1. commuting distance
 - 2. infrastructure demand (not only grid!)

Research Program:

- 1. Prepare the static urban structure model to fit to spatial demographic data (4 german cities; folksy preferences; forthcoming with Claudia Nobis)
- 2. Combine the (demograpieless) static urban structure model and the OLG Model (DUSE, this paper)
- 3. Combine 1 + 2, Infrastructure supply, optimal dynamic infrastructure policy

Dynamic Urban Structure Equilibrium - DUSE

Model:

- cohort-representing agents maximise their lifetime utility s.t. their period budgets
- each cohort-representing agent consists of a continuum spatial differentiated consumers [n(u)]. They live on discrete rings u around a Central Business
 District and maximise their sub-utility U(cr,cw) s.t. w-tu = pr cr + pw cw
- No Movement Condition: consumer receive the same amount of utility independent of the of their flag and the same amount of utility
- producers (flats in each ring religible) rest hise their profits,
- all markets clear (Factor markets clear (Factor markets clear).
- → Dynamic Urban Structure Equilibrium (DUSE)

Spatial structure of the Steady State

Transition Dynamics - population decline

Development of key indicators relative to their initial value

Transition Dynamics - population decline

Development of spatial structure realtive to its initial value n(u,t): Population in ring u, time t

Infrastructure - population decline

Development of road infrastructure demand $I(u,t) = \sum_{u^*=u+1}^{U} \frac{n(u^*,t)}{2\pi u^*}$

- other types of infrastructure derived from density possible

Conclusion

- Infrastructure demand developes with substantial spatial heterogeniety
- peripherial areas are more sensitive to demographic change and they show non monotonicity
- Requirements to infrastructure development: adaptability!

Thank you for your attention!

Dynamic Urban Structure Equilibrium - DUSE

Linking:

- 1. klassischer Utility Link:
- $c = pc (p^c)^{\mu} (p^w)^{1-\mu}$
- → Preisgleichung : $1 = p (p^c)^{\mu} (p^w)^{1-\mu}$
- 2. Übertragung

$$c-tu = (pc-ptu) (p^c)^{\mu} (p^w(u))^{1-\mu}$$

- \rightarrow const = $p^w(u)$
- 3. Lösung 1

Verzicht auf den Utility Link

4. Lösung 2

$$c = (pc-tu) (p^c)^{\mu} (p^w(u))^{1-\mu}$$

 \rightarrow p