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Abstract

As European countries move towards complete unbundling
in electricity markets, some issues regarding market design are
still under discussion. In particular, which market configuration
would give the right incentives to promote efficiency and reduce
final prices. In this paper we analyze a design in which prices
are binding for more than one market period (like in the former
British system or in the Australian system) and we compare price
equilibria and collusive incentives under proportional and efficient
rationing. To do so, we build on Le Coq (2002) and Crampes
and Creti (2003) framework to account for stochastic demand.
Our results suggest that with stochastic demand, incentives for
strategically withholding capacity are still present but incentives
to agree on market share are mitigated by efficient rationing.
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1 Introduction

Many authors have used game theory to model wholesale electricity mar-
kets since monopolistic and vertically integrated environments left their
place to deregulated environments where the objective is profit maxi-
mization instead of system-wide cost minimization. In particular, theory
tried to find out if the market configuration chosen by different countries
provided the right incentives for efficient production.
A first group of papers used Bertrand paradigm to model electricity

markets taking capacity constraints as given. This is the case of Hobbs
(1986) that used the previous paradigm applied to New York’s electric-
ity market. Similarly, others modeled power transactions as static and
complete information games where information costs were shared among
players and bidding prices were linked with generation output (e.g. Fer-
rero et al. 1997).
It has been observed that, while state monopoly of generation was

accompanied by over-investment in capacity, in a liberalized market big
generators use their available capacity strategically to enhance their mar-
ket power. Patrick and Wolak (2001) studied British market for the pe-
riod 1991-1995 and found evidence that nourish this affirmation1. Sim-
ilar results were obtained by other econometrics based empirical work,
such as Joskow and Kahn (2001) and Harvey and Hogan (2001).
Therefore, models that endogenize capacity choice gain particular

relevance. This is the case of von der Fehr and Harbord (1997) that
model a two-stages-game and assumed that utilities choose investment
in a first stage and price in a second one working in a framework similar
to the one used in the seminal paper of Kreps and Scheinkman (1983).
The later had shown that, in a market with homogeneous products in
which firms non-cooperatively pick capacities in the first stage and set
prices in the second stage, the equilibrium outcome was that of a one-
shot Cournot game. In the same line, Castro-Rodriguez et al. (2001)
show that from a social welfare point of view, firms build low levels
of generation capacity. Finally, Reynolds and Wilson (2000), analyzing
investment and pricing incentives in a symmetric Bertrand-Edgeworth
framework, find that a smaller firm has no incentive to expand its ca-
pacity as this expansion would reduce its expected revenue if demand is
lower than expected.
We will not focus on long-run investment decisions but more pre-

cisely generator’s “capacity declarations”, i.e. their short-term capacity
availability. In other words, this means that the strategic instrument

1The same has been observed in other countries like Spain, Norway, Sweden and
Finland and of course California.
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we will consider is not underinvestment per se but capacity withholding:
when generators reach their declared capacity there is an incentive to bid
a higher price. Moreover, given that demand in this market is highly
inelastic, the incentive to bid a high price is even stronger.
Le Coq (2002) and Crampes and Creti (2003) are particularly inter-

ested in the phenomenon just described. Both papers, like Kreps and
Scheinkman (1983), consider a two-stage game where in a first stage
agents bid capacities knowing demand, and in the second one they bid
prices. However, differently from the previous literature, they model the
second stage as a uniform price auction (instead of Bertrand competi-
tion) to describe the most commonly observed electricity market design.
The latter adds value to the former allowing for mixed strategy Nash
equilibria for a specific cost configuration.
We build on their framework to analyze an alternative design that

is the one present in the Australian system and in the former British
system. In these cases generators must submit a single bid for the 48
thirty-minute day-ahead markets (and therefore facing a stochastic de-
mand): in our model agents bid capacities without knowing the level of
demand that will be realized. Then, we compare the results of our model
in terms of price equilibria and collusive incentives under proportional
and efficient rationing. Finally, we compare our results with the ones
found with deterministic demand by Crampes and Creti (2003).
Our market configuration leads to the same results found in Crampes

and Creti (2003) in that the equilibrium price is never the one that would
result from a Bertrand game, that is, by withholding capacity agents
succeed in maintaining high prices. But contrary to what happens in
their market configuration, in our design we find that incentives to agree
on market share are mitigated when demand is stochastic and the System
Operator (SO) uses efficient rationing.
In Section 2 we state the assumptions and timing of the game. In

Section 3 and 4 we present our model and compare it with previous
findings. In Section 5 we conclude and suggest some further extensions.

2 Assumptions and timing of the game

We assume there are two generators Ga and Gb. It is common knowledge
that one of them, lets say Ga, is bigger a priory (Kamax > Kbmax) and
more efficient2 so the marginal costs satisfy: ca < cb.
We also assume there exists a price cap3 fixed by the regulator de-

2This is generally the case in electricity markets where the different technologies
used to produce energy have well known costs and returns.

3Usually the regulator sets the price cap after estimating the efficient marginal
cost of generation.
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noted by p̂ > cb.
We proceed by backward induction so the last stage exposed is the

first one played.
In the second stage of the game, we assume that generators play a

capacity constrained game. Therefore, before bidding price, each gen-
erator j knows the capacity chosen by his competitor i and the level of
inelastic demand4 for the day-ahead market that in the first stage was
unknown.
For each market period, the market is cleared by a uniform price

auction. This means that when agents bid different prices, the low bidder
is dispatched first and then the higher bidder is dispatched the residual
demand. The marginal price for electricity will be the one bided by the
high bidder and both will be paid this price for the amount of electricity
they are called for.
When two generators bid the same price we will assume for a start

that, as in most countries, proportional rationing is used, that is, each
generator Gi is dispatched a quantity equal to Ki

Ki+Kj
. In Lemma 17 we

will prove that results for the second stage of the game are invariant if
efficient rationing is used instead5.
The day is divided into market periods6, usually hourly or for every

30 minutes and like in the case of the former British market or the Aus-
trialian market, the price must be held fixed for more than one market
period. In this case generators don’t know demand when they decide
their level of production (or capacity as we will call it). We capture this
feature by assuming demand is stochastic in the first stage of the game.
Therefore, in the first stage to be modeled in section 4 generators

choose to produce any amount lower than their maximum capacityKi 6
Kimax without knowing the level of demand that can be at its peak
level Dp with probability h or off peak, Dn, with probability (1− h).To
model this we will assume that only the output effectively produced will
generate costs.
Moreover, we will assume that shortage can only be provoked by

firms7, that is Kamax +Kbmax > Dp and that there is a penalty if this
occurs: both generators must pay a fixed amount denoted by S.

4Assuming inelastic demand is reasonable because, as explained by Joskow and
Tirole (2004), in most of the countries consumers are metered only once a month or
every few months having no incentives to change demand in response to changes in
real time prices.

5Of course this is not the case for the first stage of the game where incentives to
collude change greatly weather we assume efficient or proportional rationing.

6This period is usually called load.
7We have no interest in analyzing the case in which there is unintentional shortage,

that is, we are not interested in long term investment decisions.
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3 Second stage: price game

The choice of capacity made in the first stage of the game Ki will lead
generators to one of the following ex-post demand cases.

3.1 Case a) Low demand
If once revealed demand is such that D < Ki; i = a, b, both generators
have enough capacity to satisfy all the market by themselves if the SO
dispatches it. If both enterprises had symmetric marginal costs we would
be in Bertrand’s classical price competition but, as we assumed that the
bigger one is more efficient (ca < cb), Ga will win the game.

Proposition 1 If the pair (Kbr
a ,K

br
b ) chosen in the first stage deter-

mines that none of the generators is capacity constrained, the pair (pbra , p
br
b )

that satisfies the following equation is a Nash equilibrium of the price
subgame:

pbra =max(cb − ε, ca) which gives Πa = (cb − ca)D (1)

pbrb = cb which gives Πb = 0

where ε tends to 0.

Proof. See Apendix.
The fact that ε tends to zero means that it is a bid smaller than cb

but as close to it as possible8.
Therefore in this case of ex-ante low demand, in equilibrium, Gb will

realize zero profits and Ga will serve all the demand.

3.2 Case b) Intermediate demand
If once revealed demand is Ki < D < Kj there exists a continuum of
equilibria where the price cap p̂ is offered by the larger firm knowing
that the low capacity firm will offer less to avoid being undercut. Both
receive the price cap at the end (uniform auctioning).

Proposition 2 When demand is lower than the larger capacity declared,
if Ga, the most efficient generator, is the one with the capacity advantage,
that is Kbr

b < D < Kbr
a , there are two possible families of equilibria for

(pbra , p
br
b ):

8In real markets generator’s price announcements are limited to a finite number
of values lower than the price cap called ticks. We ignore this to avoid calculus
complications that would not change our results significantly.
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a)

pbra = p̂ which gives Πa = (p̂− ca)(D −Kb) (2)

pbrb ∈ [0, αa] which gives Πb = (p̂− cb)Kb

αa= ca + (p̂− ca)
(D −Kb)

D
where αa > cb

b) Equilibrium defined in Case a if αa < cb.
where αa is the threshold that ensures Gb to sell all his production

when Ga bids at the price cap.

Proof. See Appendix.
Gb will be dispatched first as he bids a lower price and he will sell all

the capacity he made available. Then, Ga will be dispatched the residual
demand. Finally both will receive the uniform price cap for each MWh
of electricity.
It could also be the case that, even if Kamax > Kbmax, in the first

stage of the game Ga chose to make available less capacity than Gb. In
that case where Kbr

a < D < Kbr
b , instead of the two families of equilib-

ria described in the previous proposition we would have only one fam-
ily of equilibria symmetric to the one described in (2) simply changing
subindex a for b and vice versa. In this case, Ga would be dispatched
first and Gb would be the one serving the residual demand. The only
difference would be that the condition on the threshold, that in this case
would be αb > ca is not needed any more. This is the case because as
we assumed ca < cb, Gb is always better off bidding the price cap p̂ than
undercutting Ga’s bid (strategy that gives negative profits).

Proposition 3 When demand is lower than the larger capacity declared,
if Gb, the less efficient generator, is the one with the capacity advantage,
that is Kbr

a < D < Kbr
b , there is only one possible family of equilibria for

(pbra , p
br
b ):

pbrb = p̂ which gives Πb = (p̂− cb)(D −Ka) (3)

pbra ∈ [0, αb] which gives Πa = (p̂− ca)Ka

αb= cb + (p̂− cb)
(D −Ka)

D

Proof. The proof follows from the one of the previous proposition.
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3.3 Case c) High demand
If once revealed demand is Ki < Kj < D < Ki +Kj we find two sets
of equilibria in pure strategies: one in which Gb bids the price cap and
serves just residual demand and anotherone in which Ga is the one that
bids the price cap while Gb undercuts this bid and is dispatched first.
This is the case as the production of both agents is needed to satisfy

demand and therefore both know that they will be called into operation.

Proposition 4 If the pair (Kbr
a ,K

br
b ) chosen in the first stage deter-

mines that Kbr
i < Kbr

j < D, we find two set of equilibria in pure strategies
for the pair (pbra , p

br
b ):

a)

pbra = p̂ which gives Πa = (p̂− ca)(D −Kb) (4)

pbrb ∈ [0, βa] which gives Πb = (p̂− cb)Kb

βa= ca + (p̂− ca)
(D −Kb)

Ka
where βa > cb

where βa is the threshold for p
br
b that ensures that Ga is better off

bidding the price cap p̂.
b)

pbrb = p̂ which gives Πb = (p̂− cb)(D −Ka) (5)

pbra ∈ [0, βb] which gives Πa = (p̂− ca)Ka

with βb = cb + (p̂− cb)
(D −Ka)

Kb

Proof. See Appendix.
If βa < cb, we would have b) as the unique set of equilibria in pure

strategies but this particular case needs not to be satisfied neither in
our model nor in reality. Therefore, when βa > cb, none of this two
set of equilibria can be discarded by a Pareto dominance criterion as
both generators would prefer to be the lower bidder in order to sell all
the capacity they made available. This means that Ga is better off in
equilibria b) while Gb is better off in equilibria a). Then, the two set
of pure-strategy equilibria described illustrate that when a firm chooses
a price to bid, on one side, he has an incentive to bid the highest price
possible as he knows that he will be called into operation anyway. On
the other side, bidding low enough to avoid undercutting ensures to
be called into operation first in the merit order and be able to sell all
the capacity made available. The previous contraposition makes some
authors, like Larson and Salant (2003), say that in the case of uniform
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auctions where prices can vary continuously9 and all the players know
they must be called into operation, is more likely that generators play in
mixed strategies. Similarly, Binmore et al. (2004) say "...the equilibria
may well be in mixed strategies whenever bidders do not have sufficient
lots to satisfy all of the demand, but there is excess supply in aggregate."
Given the previous argument, we will also characterize the equilib-

rium in mixed strategies. In this equilibrium, for a given strategy of
the competitor, each generator is indifferent between all the prices over
which he randomizes.

Proposition 5 If the pair (Kbr
a ,K

br
b ) chosen in the first stage deter-

mines that Kbr
i < Kbr

j < D and βa > cb
10, we find the following mixed

strategies equilibrium for pbrj :

pbrj ∼ Fi(pi) on [cj, p̂] (6)

where Fi(pi) describes the cumulative distribution of probabilities for
Gi bids in the support [cj, p̂].

Proof. See Appendix.

3.4 Case d) Not served demand
If demand is D > Ka + Kb, there is a shortage penalty S ≥ 0 such
that the profits for both generators lower than in the previous case:
Πi = (p̂ − ci)Ki − S. This implies that generators will try to avoid
paying this shortage penalty, that is, they will prefer to be in Case b or
Case c than in this case.

3.5 Key results from the second stage
Some remarks are worthwile before moving to the first stage of the game.
In Case b of ex-post intermediate demand, even if demand could be
completely served by one of the generators, say Ga, but exceeds the
capacity declared by the other one, say Gb, the marginal price is equal to
the price cap p̂ and both firms benefit from high markups. The efficient
outcome would be having Ga serving the whole market at a price equal
to ca11.

9This implies that infinitesimal undercutting is possible.
10Remember that if this is not the case the set in b) is the unique pure nash

equilibria.
11We will show in Section 4 that this will never be the case as Case a will be

avoided by strategically withholding capacities.
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In Case c of high demand, as none of the generators can satisfy the
demand alone, the equilibrium price will never be lower than the highest
marginal cost cb, or in other words, as both must be dispatched to serve
the demand, the least efficient firm is protected in any case against losses
due to low bids. Moreover, the most efficient one knows he will never
get a price lower than cb, which ensures him a positive profit.

4 First stage: capacity game

In the previous Section we showed that different price equilibria can be
reached depending on the capacities chosen in this first stage Ka and
Kb in comparison with the level of demand realized. Therefore, in this
Section we will model how the choice of Ka and Kb is made. As a
preliminary result, we will present in the following subsection the case
where this choice is made knowing the level of demand to be realized.
Then, from subsection 4.2 to 4.4 and in contrast with the existent

literature, we will consider the case in which these capacity declarations
are made before the true demand is known i.e. demand in this stage
is considered stochastic and its distribution is assumed to be common
knowledge12.
To make our modeling easier we define a parameter δ = p̂−cb

p̂−ca < 1
that measures the disadvantage of Gb in terms of costs. As we assumed
ca < cb, this implies that p̂ − ca > p̂ − cb which means that the new
parameter is δ < 1. Then, the condition on (2) that αa > cb is equivalent
toKb < Dδ which ensures that (p̂−ca)(D−Kb) > (cb−ca)D, or in other
words, that ensures that bidding the price cap is better than a fight in
prices13.
Similarly, the condition on (4) that βa > cb is equivalent to Ka ≤

1
1−δ (D − Kb), which in other words ensures that (p̂ − ca)(D − Kb) ≥
(cb − ca)Ka is satisfied14.

12Remember that D is distributed as follows:

D =

½
Dp with probability h

Dn with probability 1− h

13If Kb < Dδ, which is equivalent to Kb < D p̂−cb
p̂−ca . Multiplying by (p̂ − ca) and

substracting p̂Kb to both sides we get (p̂−ca)(D−Kb) > (cb−ca)D which we already
showed is equivalent to αa > cb.
14Ka ≤ 1

1−δ (D − Kb), given the definition of δ, means that Ka ≤ p̂−ca
cb−ca (D −

Kb) equivalent to (p̂ − ca)(D −Kb) ≥ (cb − ca)Ka, dividing both sides by Ka and
substracting ca to both sides, the previous expresion is equivalent to βa > cb.
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4.1 Ex-ante low deterministic demand
In this section we analyze the case where generators know the level
of demand before deciding their level of production, i.e. demand is
deterministic. Moreover none of them is a priory capacity constrained,
i.e. D < Kbmax < Kamax.
In this case the best response functions in the capacity game can be

obtained as in the following Lemma 6 and 7:

Lemma 6 The best response function of Ga in the case of deterministic
low demand is:

Ka(Kb) =

½
Ka > D −Kb if Kb ≤ Dδ

Ka = D − ε if Kb > Dδ
(7)

where ε > 0 tends to zero.

Proof. See Appendix.

Lemma 7 The best response function of Gb in the case of deterministic
low demand is:

Kb(Ka) =

½
Kb > D −Ka if Ka < D

Kb = Dδ − ε if Ka ≥ D
(8)

Proof. The best response for Gb is derived computing Πb in each of the
cases in Lemma 6.
Given Lemmas 6 and 7, the equilibria is stated in Proposition 8.

Proposition 8 There are three families of equilibria in the case of de-
terministic low demand:

i) (Ka, Kb) = {Ka,Kb s.t. Ka < D,Kb ≤ Dδ,Ka +Kb ≥ D} (9)

ii) Ka ≥ D,Kb = Dδ − ε

iii) Ka = D − ε,Kb ≥ Dδ

Proof. See Appendix.

4.2 Case 1) Ex-ante low stochastic demand
As we already said, in many countries generators have to decide the
capacity they will make available before knowing the actual level of de-
mand. In this subsection we derive the equilibrium assuming that just
the stochastic distribution of demand is known. Moreover, we consider
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the general case where none of the generators is capacity constrained,
i.e. Dn < Dp < Kbmax < Kamax.
The best response functions under stochastic demand are obtained

in Lemmas 9 and 10 for each agent respectivelly.

Lemma 9 The best response function of Ga in the case of ex-ante low
stochastic demand is:

Kbr
a (Kb) =

½
Ka > Dp −Kb if Kb ≤ Dnδ

Ka = D − ε if Kb > Dnδ
(10)

Proof. See Appendix.

Lemma 10 The best response function of Gb in the case of ex-ante low
stochastic demand is:

Kbr
b (Ka) =

½
Kb > Dp −Ka if Ka < Dn

Kb = Dnδ − ε if Ka ≥ Dn
(11)

Proof. The best response for Gb is derived computing Πb for each zone
as in Lemma 9.

Proposition 11 There are three families of equilibria in the case of ex-
ante low stochastic demand:

i) (Kbr
a ,K

br
b ) = {Ka,Kb s.t. Ka < Dn,Kb ≤ Dnδ,Ka +Kb ≥ Dp}

(12)

ii) Kbr
a ≥ Dn,K

br
b = Dnδ − ε

iii) Kbr
a = Dn − ε,Kbr

b ≥ Dnδ

Proof. See Appendix.
Each of these families of equilibria in the capacity game will lead us

to a different outcome in the next step of the game described in Section
3. Comparing the payoffs for each realization of demand we can derive
the following propositions:

Proposition 12 If once revealed demand is Dp, type ii equilibria is pre-
ferred by Gb to type i and iii in that order and type iii is preferred by Ga

to type i and ii in that order.
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Proof. See Apendix.
As profits of Gi are decreasing with Kj, in type i the case where the

restriction on the sum of capacities is satisfied with equality Ka +Kb =
Dp Pareto dominates the case whereKa+Kb > Dp. This point is feasible
when Dp is realized as, on one side, Ka < Dn and therefore the following
inequality is satisfied Ka+Kb < (1+ δ)Dn, and on the other side, given
the condition on the distance betweenDn andDp mentioned in the proof
of (12), the following inequality is true: Dp < (1 + δ)Dn.

Proposition 13 If once revealed demand is Dn, although total payoffs
differ from the ones verifyed when Dp is realized, still type ii Âbtype i Âb

type iii and type iii Âatype i Âa type ii.

Proof. See Apendix.
In this case, when demand is Dn, in type i equilibria the point where

Ka +Kb = D is satisfied cannot be reached as they did not know that
demand was going to be low and, to avoid the penalty, they played
Ka +Kb ≥ Dp. Therefore, when demand is low, both get lower profits
than in the case of high demand.
Propositions 12 and 13 mean that each generator prefer to be the

first one dispatched selling all the capacity they made available and
being paid the price cap bidded by the other player. Therefore, none
of the three families of equilibria in (12) can be discarded by a Pareto
dominance criterion.
A final remark is worthwile to better understand the following sec-

tion: in type ii equilibria Ga is better off when Dp is realized. Similarly,
Gb is better off whenDp is realized in type iii equilibria as he would real-
ize positive profits. Finally, in type i, as we already said, both are better
off when Dp is realized and their production satisfies Ka +Kb = Dp.

4.3 Comparison between stochastic and determin-
istic demand

We will focus our comparison in two issues of interest: on one side, on
the possibility of strategic capacity withholding, and, on the other side,
on the incentives for players to agree on market share under either deter-
ministic or stochastic demand. It is important to state clearly that our
objective is just to discuss, in the light of our previous results, the incen-
tives for agreeing on market share and not to model how the collusion
could be attained or how the agreement could be reinforced. Modelling
collusion is beyond the objective of this work and left to further exten-
sions.
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From the result in (9) that describes the equilibrium for the case
where generators bid capacities knowing they are in an ex-ante low de-
terministic demand case, it can be seen that there are strong incentives
to strategically withhold capacities to avoid being in Case a. Unfortu-
nately, the following proposition states that the same can be concluded
in the case of stochastic demand.

Proposition 14 Introducing uncertainty with respect to the level of de-
mand is not enough to induce players not to strategically withhold
capacity.

Proof. See Apendix.
Given that, as we already said, profits of Gi are decreasing with Kj,

the case where the restriction on the sum of capacities is satisfied with
equality Ka +Kb = D pareto dominates the case where Ka +Kb > D
in type i equilibria. This could represent an incentive for generators to
agree on market share as stated in the following Proposition:

Proposition 15 When demand is known, if Ga and Gb want to avoid
the worst possible outcome (type ii and type iii equilibria respectively),
they can agree on sharing the demand in type i equilibria satisfying the
Pareto dominant condition Ka +Kb = D.

Proof. See Apendix.
Assuming risk averse individuals that prefer an intermediate outcome

with certainty would be enough to conclude that an agreement will take
place15.
The previous reasoning is not immediately applicable to our case

of study: with stochastic demand, generators do not know a priory if
demand will be Dp or Dn and this makes it impossible to agree on
bidding capacities such that Ka+Kb = D for every play. Moreover, the
probability for Gb to end up with Πb = 0 is reduced as, even in type
iii equilibria, he has a probability h of getting Πb > 0 if Dp is realized.
Similarly, the probability for Ga to end up with Πa = (p̂ − ca)(1 −
δ)Dn is reduced making his incentives to agree on market share weaker.
However, incentives have not yet completely disappeared as stated in
the following proposition:

Proposition 16 Introducing uncertainty with respect to the level of de-
mand is not enough to make incentives to agree on market share
completely disappear.
15We could even suggest that, it is likely that Ga gets the higher portion of the

market by threatening Gb to bid all his capacity at cb leaving him outside the market.
It would be rational for Gb to believe this threat as Πa = (p̂ − ca)(1 − δ)Dn =
(cb − ca)Dn in type ii equilibria.
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Proof. See Appendix.
Some could already argue that an agrement under stochastic demand

is more difficult to accomplish than in the case of deterministic demand
where agents just needed to agree on fixed quantities.
As the agreement with stochastic demand must be based on pro-

portions of ex-post demand we will now investigate the consequences of
imposing efficient rationing instead16 of proportional rationing. In par-
ticular, we investigate wheather the previous proposition remains true.
To do so we prove in the following lemma, as we already suggested in
Section 2, that equilibria in the second stage do not depend on the fact
that we used proportional rationing.

Lemma 17 The price game equilibria described from (1) to (6) and the
derived payoffs (profits) are unchanged under efficient rationing.

Proof. See Appendix.
Given the above lemma, the efficient rationing rule does not change

the equilibria reached in the second stage but, as we will see, has a sig-
nificant effect on the possibility of collusion when demand is stochastic.

Proposition 18 In the case of stochastic demand, incentives to agree
on market share are mitigated by the efficient rationing rule.

Proof. See Apendix.
A final comment is worthwhile: the families of equilibria found are

independent of the distribution of probability of demand. Then, it is
straightforward to extend our reasoning for a continuous distribution,
lets say a uniform distribution between Dp and Dn. In this case we
would be in a continuum of cases between the ones exposed here.
Here we have analyzed the most general case in which none of the

generators is capacity constrained. Now we describe the other possible
equilibria when one or both generators are ex-ante capacity constrained.
The propositions stated in this section are still valid for the following
cases as they are particular cases of this general unconstrained case.

4.4 Case 2) Smaller generator is capacity constrained
In this section we assume that the smaller generator is capacity con-
strained that Ga is not, i.e. Dp < Kamax. From Figure 4 in the Ap-
pendix, the equilibria described in (12) still holds if the smaller gener-
ator is capacity constrained in peak demand, even in the case in which

16Efficient rationing in an auction means that, when two players bid the same
price, the one with lower marginal cost ca is dispatched first.
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Kbmax < Dpδ. It also holds if he is constrained in off peak demand when
it is the case that Dnδ < Kbmax < Dn. Therefore, the conclusions ex-
tracted in the previous section can be applied immediately to this case.
On the other hand, if the capacity constraint of the smaller generator

is such that Kbmax < Dnδ, the equilibria in (12) are not longer possible
and the following proposition is true:

Proposition 19 If the capacity constrain of the smaller generator is
such that Kbmax < Dnδ, the only possible equilibria is:

(Kbr
a ,K

br
b ) = {Ka,Kb s.t. Ka ≤ Dn,Kb ≤ Kbmax,Ka +Kb ≥ Dp} (13)

Proof. This is a particular case of the unconstrained case proved in
Lemma 9 and Proposition 11.
If revealed demand is Dn, this implies that in the next stage, we will

be in Case c, where E(Πi) = (p̂− ci)(Dn −Kj).
On the other hand, if demand is Dp we will be in Case c but with

a higher demand to satisfy that will determine higher expected profits:
E(Πi) = (p̂ − ci)(Dp − Kj). Pareto optimality will be achieved in this
case if Ka +Kb = Dp where Ka must increase as the constrain on Kb is
more severe. This becomes an advantage for Ga because even without
negotiation he will serve a greater part of the market at the price cap p̂.
In other words, in a market where proportional rationing is used,

negotiation on market share is still possible in this Case 2 but the ¨ne-
gotiation set¨ is reduced to the advantage ofGa.Moreover, capacity with-
holding is also possible but the outcomes among which the players can
choose are reduced by a real constraint: Kbmax < Dnδ.
On the other hand, with efficient rationing the result stated in Propo-

sition 18 is still true for this case.

4.5 Case 3) Both generators are capacity constrained
This case implies that Kamax < Dn < Dp < Kamax + Kbmax. As in
the previous case, the equilibria described in (12) still holds if Ka (and
consequently17 Kb) are lower than Dp but still higher than Dn. If it is
not the case, the following proposition applies:

Proposition 20 If Kbmax < Kamax < Dn the equilibria becomes:

(Kbr
a ,K

br
b ) = {Ka, Kb s.t. Ka ≤ Kamax,Kb ≤ min(Dnδ,Kbmax),Ka+Kb ≥ Dp}

(14)

17Remember that by assumption is always true that Kamax > Kbmax.
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Proof. This is a particular case of the unconstrained case proved in
Lemma 9 and Proposition 11.
In this last case, if demand is Dn, we then will be in Case c, where

E(Πi) = (p̂− ci)(Dn −Kj).
On the other hand, if demand is Dp we will be in Case c but with

a higher demand to satisfy where Pareto optimality can be achieved if
Ka +Kb = Dp.
In this case capacity withholding could happen but the constraints

on capacity are already severe. An agreement to ensure Ka +Kb = Dp

could still be possible under proportional rationing but the incentives are
few given that the negotiation set is already reduced. Moreover, with
efficient rationing the result stated in Proposition 18 is also true for this
case.

5 Conclusion

This work provides some insights into market design in electricity mar-
kets. We have modeled how price and quantity are determined in the
day-ahead wholesale market for electricity as a two stages game where
demand is stochastic in the first stage. Then, we have compared our
results with the case of deterministic demand already modeled by Le
Coq (2002) and Crampes and Creti (2003). Moreover, this compari-
son has been done taking into account alternatively two commonly used
rationing rules: efficient and proportional rationing. Finally, we have
discussed the incentives for agreeing on market share that emerge from
our model results.
We have shown that incentives to agree on market share are strong in

the case of deterministic demand but they are mitigated when demand is
stochastic and the System Operator uses efficient rationing. This result
holds for any distribution of probabilities of demand. In any case, even
in this last case where an agreement is not possible, the equilibrium
price is never the one that would result from a Bertrand game. Instead,
by withholding capacity, agents succeed in maintaining the price higher
than the efficient one and usually equal to the price cap.
As we explained in these few lines, our analysis introduces in a the-

oretical framework some features of real electricity markets unattended
until today and in this sense constitutes a first step for further extensions.
An immediate extension would be to actually model collusion under sto-
chastic demand in order to investigate to which extent the agreement
discussed here could be attained and the possible ways to reinforce it.
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7 Appendix

Only proofs of key resuls are displayed here. Other proofs are available
upon request to sanin@core.ucl.ac.be.

7.1 Proof of Proposition 5
We proof the statement in relation to Ga as the solution in relation to
Gb is symmetric. For any given strategy of Gb, that is, for a distribution
of probabilities fb played by Gb, Ga is indifferent between all the prices
over which he randomizes, i.e. any price belonging to [pamin, p̂]. To find
fb we maximize the expected profits of Ga with respect to pa:

E(Πa(pa, fb(pb)) =

Z p̂

pbmin

Πa(u)fb(u)du (15)Z pa

pbmin

(pa − ca)(D −Kb)fb(u)du+

Z p̂

pa

Πa(u)fb(u)du =

= (pa − ca)(D −Kb)Fb(pa) +

Z p̂

pa

Πa(u)fb(u)du

The F.O.C. is then obtained by deriving:

∂E(Πa(pa, fb(pb))

∂pa
= 0 (16)

(D −Kb)[(pa − ca)fb(pa) + Fb(pa)] + (p̂− ca)Kafb(p̂)− (pa − ca)Kafb(pa) = 0

(D −Kb −Ka)(pa − ca)fb(pa) + (D −Kb)Fb(pa) = 0

as fb(p̂) = 0 given that punctual value of any continuous density
function is zero.
The solution of the differential equation obtained gives us the distri-

bution we were looking for18:

Fb(pb) =

∙
pb − ca
Ab

¸γb
where γb =

(D −Kb)

(Ka +Kb −D)
(17)

where Ab = p̂ − ca, the value in (15) of pbmin = ca. It can be deter-
mined taking into account that Fb(pb) accumulates all the probability

between [pbmin, p̂] which means that Fb(p̂) =
h
p̂−ca
Ab

iγb
= 1. Similarly,

18Is easy to verify that (17) is the solution for the last row of (16). Rearranging to

find fb
Fb
in function of all the other parameters we can derive ∂Fb(pb)

∂pb
= γb

Ab

h
pb−ca
Ab

iγb−1
and substituing its value in the diferencial equation we find fb

Fb
= Ab

Ab
γb(pb − ca)

−1

that is exacly what the third row of (16) describes.

19



as the minimum value of Fb(pb) is zero it must be the case that the
minimum value for pbmin = ca. Also, γb > 0 when Kb < D. Of course
D < Ka+Kb as the case of rationing is described in the following section.
Then, the expected profits of Ga for any play of Gb can be found:

Z p̂

pa

Πa(u)fb(u)du = (p̂−ca)(D−Kb)−(pa−ca)(D−Kb)

∙
pb − ca
p̂− ca

¸ (D−Kb)
(Ka+Kb−D)

(18)
That is:

E(Πa(pa, fb(pb)) = (p̂− ca)(D −Kb) (19)

As required, is independent from pa : this is the expected profits for
Ga from playing, in this high demand case, any price belonging to [ca, p̂].
Using the same reasoning the expected profits that Gb would derive

from bidding any price belonging to [cb, p̂] for any play of Ga would be:

E(Πb(pb, fa(pa)) = (p̂− cb)(D −Ka) (20)

Equations (19) and (20) characterize the profit derived from the equi-
librium in mixed-strategies when demand is higher than the larger ca-
pacity declared available: Ki < Kj < D < Ki +Kj.

7.2 Proof Proposition 11
Intersecting both best response functions we find the families of sub-
game perfect equilibria for the case of stochastic demand distributed
between Dn and Dp. These equilibria constitute the shaded grey area in
the following figure that is the intersection between the black area that
represents the best response of Ga and the dotted area that represents
the best response of Gb.
To ensure the existence of type i equilibria (the triangular part of

the grey area) we assume that the distance between Dn and Dp is such
that (1 + δ)Dn > Dp. Otherwise only equilibria ii and iii would be
possible as the triangular area in the figure would disappear. It is a
strict inequality because if it was the case that (1 + δ)Dn = Dp, the
constraint Ka +Kb ≥ Dp could never be satisfied as the equilibrium is
defined for Ka < Dn.
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7.3 Proof of Proposition 12
Type ii equilibria lead us to Case c or, if Ka > Dp, to Case b part a19

where Ga has the capacity advantage. Then, type ii equilibria when
demand is Dp implies the following payoffs:

Πa = (p̂− ca)(Dp − δDn) and Πb = (p̂− cb)Dnδ
Symmetrically, type iii equilibria lead us to the same Case c or Case

b where Gb has the capacity advantage if Kb > Dp:
Πa = (p̂− ca)Dn and Πb = (p̂− cb)(Dp −Dn) > 0
On the other hand, in type i, if demand isDp, we fall in Case c where

E(Πi) = (p̂− ci)(Dp −Kj).
Using the condition on the distance between Dn and Dp imposed in

the proof of equation (12), i.e. (1+ δ)Dn > Dp, we can directly compare
the payoffs of each player for each equilibria and conclude that:
a) when Dp is realized Gb prefers type ii equilibria to type iii as in

the first case he gets Πb = (p̂−cb)Dnδ for sure while in the second case he
gets something lower that tends to the previousΠb whenDp → (1+δ)Dn.
Moreover, type i is prefered to type iii, as in type i he expects to sell
Dp −Ka where Ka < Dn.
b) when Dp is realized Ga prefers type iii equilibria to type i equi-

libria that is prefered to type ii.

19We will never be in part b as Kb cannot be higher than Dnδ which is equivalent
to say that αa cannot be lower than cb.
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