Infrastructure cost calculation and charging for Heavy Goods Vehicles on German motorways

Gernot Liedtke
Aaron Scholz

Institute for Economic Policy Research (IWW)
Universität Karlsruhe (TH)
Legal framework for HGVs charging

- **Directive 1999/62/EC**
 - sets the general principles on the charging of HGVs for the use of certain infrastructure

- **Directive 2006/38/EC**
 - successor Directive
 - greater flexibility in toll differentiation
 - sets core-principles for the calculation and allocation of infrastructure costs

- **ABMG (Autobahnmautgesetz für schwere Nutzfahrzeuge)**
 - conversion of EC-Directives into German law (core-principles for HGV charging in Germany)

- **Lkw-MautV (Lkw-Maut-Verordnung)**
 - regulates operational implementation (e.g. starting date, charging system, etc.)

- **Lkw-MautHV (Mauthöhenverordnung)**
 - sets concrete charges per kilometer

- **MautStrAusdehnV (Mautstreckenausdehnungsverordnung)**
 - regulates the incorporation of some highways in the charging system
European example I: Austria (Herry et al., 2001)

- Unit replacement values by expert estimations,
- Applied to the whole inventory of roads and structures,
- Calculation of annuities,
- Stochastic survival functions,
- Cost allocation by using allocation keys derived from regression analysis.

Pros:
- Implementation simple
- Complex allocation schema

Cons:
- Sum of depreciations ≠ initial investment expenses
- Not compatible with national investment plans
- Fallacious regression, focus on capacity-demand allocation-keys
- No link to engineering knowledge
- Simple survival model
European example II: DIW method (PIM) - cost calculation

- Expenditures from (federal) budget,
- Investments aggregated into 4 homogeneous groups,
- Stochastic survival functions,
- Linear depreciation of replacement values.

Pros:
- Implementation easy, robust
- Strategic decision support (truck is cheap → investments into roads)

Cons:
- Danger to “forget” cost elements
- Disaggregation by links, road types and regions impossible
- Sum of depreciations ≠ initial investment expenses
- Possible gap between “real” and “accounted” inventory

Problematic when applied to design a tariff system:
- PPT models
- Other European frameworks
Problems with the cost allocation approach:

- Not future-oriented,
- Incentives for underinvestment and long-term inefficiency,
- Not fair,
- Latent danger that all types of overhead costs are allocated by using AASHO factors.
Basic principles of the IWW/ProgTrans approach

- **Fairness**
 - Inter-generational fairness
 - Intra-generational fairness

- **Theoretical business model**
 - Public or semi-private company

- **Efficiency**
 - Long-term efficiency

- Life-cycle consideration
- Economic depreciation
General schema of the IWW/ProgTrans approach

Scheme for infrastructure cost calculation and charging for HGV

Inventory of the infrastructure elements by network section and constructive element

Determining the **replacement value** by network section and constructive element for the base year 2005

Determining the **current depreciated value** by road section and constructive element for the base year 2005

Predicting the **net asset value** for the projected years by constructive element

Predicting the **reinvestments** for the projected years by constructive element

Determining and predicting the **operational costs** for the base year and the projected years

Gross value of fixed assets for the base year

Net value of fixed assets for the base year

Depreciation and interest for the base year and the projected years.

Determining the **total cost** for the base year and the projected years

Allocation calculation
The calculation approach distinguishes between the following asset categories (disaggregated approach):

- Land acquisition,
- Earthworks,
- Road layers (base layer, binder and road surface),
- Nodes (motorway, junctions and turnoffs),
- Equipment,
- Bridges,
- Tunnels,
- Motorway service areas (with or without service) and
- Maintenance depots.
Results of the disaggregated approach

German trunk road network (displayed: hilliness indicator)

Bridges of the German trunk road network (Source: BASt)
Results of the cost calculation

<table>
<thead>
<tr>
<th>Cost components</th>
<th>Gross stock of fixed assets</th>
<th>Net stock of fixed assets</th>
<th>Age structure of fixed assets</th>
<th>Depreciation</th>
<th>Interest</th>
<th>Total cost of capital</th>
<th>Capitalised investments in maintenance</th>
<th>Running costs</th>
<th>Maintenance and running costs</th>
<th>Total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear elements</td>
<td></td>
</tr>
<tr>
<td>Land</td>
<td>18,10</td>
<td>18,10</td>
<td>100%</td>
<td>0.00</td>
<td>0.80</td>
<td>0.80</td>
<td></td>
<td>0.00</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>Earthworks/planning costs</td>
<td>47.34</td>
<td>27.52</td>
<td>58%</td>
<td>0.96</td>
<td>1.22</td>
<td>2.18</td>
<td></td>
<td>0.00</td>
<td>2.18</td>
<td>2.18</td>
</tr>
<tr>
<td>Base layers</td>
<td>12.45</td>
<td>7.50</td>
<td>60%</td>
<td>0.19</td>
<td>0.33</td>
<td>0.52</td>
<td></td>
<td>0.00</td>
<td>0.52</td>
<td>0.52</td>
</tr>
<tr>
<td>Road surface 1)</td>
<td>9.22</td>
<td>5.20</td>
<td>56%</td>
<td>0.35</td>
<td>0.23</td>
<td>0.58</td>
<td></td>
<td>0.00</td>
<td>0.58</td>
<td>0.58</td>
</tr>
<tr>
<td>Point based objects</td>
<td></td>
</tr>
<tr>
<td>Installations 2)</td>
<td>18.84</td>
<td>9.42</td>
<td>60%</td>
<td>0.85</td>
<td>0.42</td>
<td>1.27</td>
<td></td>
<td>0.00</td>
<td>1.27</td>
<td>1.27</td>
</tr>
<tr>
<td>Nodes 3)</td>
<td>18.95</td>
<td>17.75</td>
<td>94%</td>
<td>0.19</td>
<td>0.79</td>
<td>0.98</td>
<td></td>
<td>0.00</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>Tunnels</td>
<td>4.14</td>
<td>3.46</td>
<td>84%</td>
<td>0.01</td>
<td>0.15</td>
<td>0.16</td>
<td>0.04</td>
<td>0.00</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Bridges</td>
<td>31.42</td>
<td>19.57</td>
<td>62%</td>
<td>0.27</td>
<td>0.87</td>
<td>1.14</td>
<td>0.19</td>
<td>0.19</td>
<td>1.34</td>
<td>1.34</td>
</tr>
<tr>
<td>Maintenance depots</td>
<td>0.64</td>
<td>0.45</td>
<td>70%</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td></td>
<td>0.00</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Service areas and lay-bys</td>
<td>8.42</td>
<td>5.17</td>
<td>61%</td>
<td>0.07</td>
<td>0.23</td>
<td>0.30</td>
<td></td>
<td>0.00</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Operation</td>
<td></td>
</tr>
<tr>
<td>Operational Costs 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>Administration and police 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>Toll system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.84</td>
<td>0.84</td>
<td>0.84</td>
</tr>
<tr>
<td>Total</td>
<td>169.52</td>
<td>114.13</td>
<td>67%</td>
<td>2.90</td>
<td>5.06</td>
<td>7.96</td>
<td>0.23</td>
<td>2.37</td>
<td>2.50</td>
<td>10.57</td>
</tr>
</tbody>
</table>

1) road surface and binder, where applicable - 2) Also includes noise barriers - 3) Additional land use at junctions and exits and their branches - 4) underpasses, retaining walls and traffic sign bridges - 5) Landscaping, winter maintenance and traffic safety measures – 6) costs borne by the federal states

Total cost of the federal motorways 2007 (in billions of Euro)

Total cost: 10.57
Cost allocation principles of the IWW/ProgTrans approach

- **Total infrastructure cost** = sum of the cost of all links and nodes,

- **Cost of each link** = sum of the cost of all structures belonging to the link,

- **Cost of each structure consists of**,
 - Short term variable cost,
 - Traffic load dependent fixed cost,
 - Basis cost.

- **Minimization of total cost** = minimization of cost for all structures according to life cycle cost considerations,

- **Allocation of total cost** inspired by Shapley formula
 - Incremental cost,
 - Uniform and capacity-dependent allocation keys,
 - AASHTO.
Facilities of the approach:
- compatible with CBA,
- principles of engineering decision making fulfilled,
- International Accounting Standards,
- Difficult to manipulate (disaggregated approach).

Future oriented approach,

Gives right incentives for efficient investments,

Methodology is suited for:
- changes in business model,
- regulation of private operators,
- detailed sub-network analysis.

Applicable for:
- railway networks and airports,
- energy transmission grids,
- telecommunication networks.
Feedbacks are welcome!!

gernot.liedtke@iww.uni-karlsruhe.de
aaron.scholz@iww.uni-karlsruhe.de